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Magnetic islands in a magnetized plasma with electron flow

J. Vranjesˇ*
Institute of Physics, P.O. Box 57, Yu-11001 Belgrade, Yugoslavia

~Received 6 January 1998!

A system of two coupled nonlinear equations describing magnetic electron modes in a magnetized inhomo-
geneous plasma with a spatially dependent electron flow is derived. For a homogeneous basic state electron
concentration, the two equations can be decoupled, and a nonlinear solution for the magnetic field in the form
of a traveling stationary vortex chain of magnetic islands is found.@S1063-651X~98!13706-6#

PACS number~s!: 52.35.Hr, 52.35.Mw
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I. INTRODUCTION

Different forms of coherent structures, double and mo
pole vortices@1#, and vortex chains@2,3#, resulting from the
self-organization of fusion and space plasmas, have attra
a lot of interest in the past 20 years. These coherent st
tures can appear in various processes such as nonlinea
teraction of a strong pump propagating through a plasm
the processes of plasma heating, with slow low freque
perturbations normally existing in plasmas@4#, in the devel-
opment of different types of instabilities@5#, etc. Since they
can carry plasma particles effectively, investigations of v
tices may be of great importance in problems of parti
transport in fusion plasmas. A significant transport of p
ticles appears in processes of inelastic collisions of vortic
in such situations there appear strong gradients of the ele
field which, similar to the classic diffusion theory, cause p
ticle transport perpendicularly to the magnetic field lines@6#.

It is known that in plasmas with density and/or tempe
ture gradients, magnetic electron modes can exist, local
to within a collisionless skin depth. They result from th
self-generation of a localized magnetic field@7–9#, and are
of special importance in laser-fusion plasmas. Nonlin
equations describing perturbations of the electron compo
of an unmagnetized weakly nonuniform plasma have m
nopolar and dipolar moving vortex solutions@10#, arising
due to the dominance of vector-product type nonlinearit
Their group velocity, perpendicular to the density gradien
the basic state, is found to be larger than the velocity
corresponding linear waves.

In our earlier paper@11#, we derived equations describin
the nonlinear magnetic electron mode in a nonunifo
~along thex axis!, unmagnetized plasma, with a shear
plasma flow in the basic state. Such a flow introduces n
terms in the corresponding evolution equations, which
responsible for the self-generation of coherent station
nonlinear structures in the form of chains of magnetic
lands. In the linear limit the general solution can be writt
as a combination of associated Legendre functions of de
1, and of the orderm5(ky

211)1/2/k, whereky is the wave
number along they axis, andk is the characteristic length
for the shear flow. The only linear solution localized alo
the x axis is obtained provided that the wave numberky
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satisfies the condition (ky
211)/k251. An instability of the

electron magnetic mode, arising from the Cherenkov inter
tion with the inhomogeneous flow exists ifky.(k221)1/2,
while in the opposite case the linear mode is damped. In
nonlinear regime, and for some new values of the parame
ky and k, two kinds of stationary solutions, in the form o
moving single and double chains of magnetic field, localiz
in the direction of the shear flow gradient, and periodic alo
the flow, were found. An interesting feature of these nonl
ear solutions is that the parametersky andk have values for
which the linear mode is highly unstable.

In this paper, we study nonlinear electron magnetic mo
in a magnetized fusion plasma. The fact that plasma is m
netized in the basic state will give some extra terms in
corresponding equations, compared to basic equation
Ref. @11#. The plasma model is as follows: the spatially no
uniform magnetic fieldBW 05B0(x)eW z and the plasma concen
tration n0(x), causing an electron flowv0(x)eW y in the basic
state, perpendicular both to the magnetic field lines and
basic state gradients. The flow of this type is responsible
the creation of coherent stationary solutions in the form
magnetic chains. The approximation of immobile ions for
ing the neutralizing background of a plasma will be use
i.e., vpi!]/]t, wherevpi is the ion plasma frequency. Tw
coupled nonlinear equations for the perturbed magnetic fi
and the plasma temperature will be derived. In the lin
regime, such equations belong to the class of equations
scribing a Kelvin-Helmholtz-type instability. Looking fo
stationary solutions, periodic along they axis with the wave
numberky , traveling with a constant velocityu in the direc-
tion of the basic state electron flow, similar to Ref.@11#, our
nonlinear equations will be integrated once. Then, using
same procedure, they will be solved numerically. As in o
Ref. @11#, we shall attempt to find a class of solutions f
corresponding plasma parameters.

II. BASIC EQUATIONS AND SOLUTIONS

We use the standard set of equations describing elec
motion, i.e., the momentum equation, energy equation,
Maxwell equations:

S ]

]t
1vW •¹W D vW 52

e

m
~EW 1vW 3BW !2

1

mn
¹W ~nT!, ~1!
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S ]

]t
1vW •¹W D ~Tn12g!50, ~2!

¹W 3EW 52
]BW

]t
, ~3!

¹W 3BW 52m0envW . ~4!

Equations~1!–~4! describe electron perturbations in the lim
of immobile ions, i.e.,vpi!]/]t!vpe, c¹W . Thus we study
slow electron motion, neglecting the displacement curren
Eq. ~4!, and the density perturbations so thatn[n0(x).
These assumptions are standardly used in the theory of
eration of magnetic fields and magnetic vortices@8–11#.

Stationary basic state, with the magnetic field given
BW 05B0(x)eW z , is described by the following equation:

d

dxS B0
2

2m0
1n0T0D 50. ~5!

Also, from Eq.~4!, we have an expression for the basic st
electron velocity:

vW 0~x!52
1

m0en0
¹W 3BW 05

c2

vpe
2

eW z3¹W V0 . ~6!

HereV0 andvpe are the electron gyrofrequency, and plasm
frequency, respectively.

We study a two-dimensional motion of electrons, i.e.,
seekz-independent solutions of the above equations. Tak
the curl of Eqs.~1!, using Eqs.~3!–~6!, after some lengthy
but straightforward algebra we have an equations for the
turbed magnetic fieldB1:

]

]tS 1

m0en0
¹W 22

e

m
2

n08

m0en0
2

]

]xD B1

1F 1

m0mS B0

n0
D 8

2
ev0

m
2

1

m0en0
S v092

n08v08

n0
D G]B1

]y

2
n08

mn0

]T1

]y
1

v0

m0en0

]

]y
¹W 2B12

v0n08

m0en0
2

]2B1

]x]y

1
1

~m0en0!2
$B1 ,¹W 2B1%50. ~7!

In the same manner, we obtain an equation for the temp
ture:

]T1

]t
1

1

m0en0
$B1 ,T01T1%1v0~x!

]T1

]y

1
~g21!T0

m0en0
2 $n0 ,B1%50. ~8!

Here we use the Poisson bracket notation

$B1 ,¹W 2B1%[S ]B1

]x

]

]y
2

]B1

]y

]

]xD¹W 2B1 . ~9!
in

n-

y

e

a

g

r-

a-

In the derivation of the above set of two coupled nonline
equations, the second order scalar nonlinear term of the f
$n0 ,B2% has been neglected compared to the vector-prod
type nonlinear term$B,¹W 2B%, as being much smaller in th
regime whenvpe

2 /k2c2 is close to, or not much larger than, 1
It is assumed also thatuk21u!Ln , LT , whereLn andLT are
the characteristic lengths of inhomogeneity forn0 and T0,
respectively.

In the local approximation alongx, from Eqs.~7! and~8!
we obtain the same dispersion equation as in Ref.@8#,

~v2v0ky!21a~v2v0ky!1b50, ~10!

where

a52
lS

2ky

lS
2ky

211
S lS

2V0-2
lS

2V09

Ln
2V081

V0

Ln
D ,

b5
ky

2lS
2vT

2

lS
2ky

211
S 1

LnLT
2

g21

Ln
2 D , lS5

c

vpe
, vT

25
T0

m
.

Obviously an oscillatory instability is possible ifa2/4,b
and LnLT.0 ~in the case of unmagnetized plasma, it is
purely growing one!. Accordingly, perturbation~creation in
the unmagnetized plasma case! of the magnetic field is
closely connected with the direction of the basic state gra
entsn08 and T08 . It can be shown@8# in the same local ap-
proximation that, in the strongly nonlinear limit, Eqs.~7! and
~8! possess stationary coherent solutions in the form
double vortex traveling with a constant velocity in the dire
tion perpendicular to the basic state gradients, and these
linear solutions may represent the final stage of the ab
gradient driven instability.

In the nonlocal treatment, Eqs.~7! and ~8! yield a com-
plicated linear eigenvalue equation in thex direction, which
is difficult to solve in general. The problem becomes mu
simpler when the effects of the concentration inhomogen
are neglected. As follows from Eq.~10!, the oscillatory in-
stability driven by the density and temperature gradients
this case disappears, and Eq.~7! is decoupled from Eq.~8!.
Using the normalization

lS¹W→¹W ,
eB0,1

m Y v 0̂

lS
→V0,1,

lS

v 0̂

]

]t
→

]

]t
, ~11!

with the basic state electron velocity written in the for

v0(x)5v 0̂f (x), Eqs.~7! and ~8! can be rewritten as

S ]

]t
1 f

]

]y
1eW z3¹W V1•¹W D ~¹W 221!V11~ f 2 f 9!

]V1

]y
50,

~12!

F ]

]t
1eW z3¹W V•¹W GT50. ~13!

In Eq. ~13!, we use notationsV5V01V1 andT5T01T1.
In the linear limit, for the perturbation ofV1 in the form

V̂1(x)exp(2ivt1iky), from Eq. ~12! we have
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d2V̂1~x!

dx2
1F~x!V̂1~x!50, ~14!

where

F~x!52k2211
f ~x!2 f 9~x!

k f~x!2v
k. ~15!

Equation~14! belongs to the class of equations describ
streaming instabilities, and in principle can be solved
some specific profiles of the flow. Thus, neglecting the d
sity gradient, the system becomes subject to a comple
different regime of instability. The possibility for instabilit
can be demonstrated using the Rayleigh theory develope
the hydrodynamics. We multiply Eq.~14! by a complex con-

jugateV̂1* (x), and integrate across the flow,

E F V̂1* ~x!
d2V̂1~x!

dx2
1F~x!V̂1* ~x!V̂1~x!Gdx50,

~16!

where the frequency is complex in the general case, i.ev
5v r1 i v i . Dividing the real and imaginary part of th
above integral, and equating the last one with zero forv i
Þ0, one can find that the instability is possible for the flo
satisfying the following condition at any position along thex
axis:

f 9~x!2 f ~x!50. ~17!

Thus, in the nonlocal treatment and in the absence of den
gradients, a streaming type instability is possible, which
the strongly nonlinear limit we expect would eventually sa
rate into a type of stationary coherent solution in the form
a vortex chain traveling along the flow and localized acr
it. A similar situation was observed in the case of an unm
netized plasma@11#. Consequently we shall concentrate
solving the nonlinear equation~12! in the strongly nonlinear
regime, in order to show that such solutions exist.

We write ]/]t52u]/]y using Eq.~6!, and in this case
Eq. ~12! can be integrated once, giving

~¹W 221!V5g~V2ux!. ~18!

A similar procedure to Eq.~13! yields

T5G~V2ux!. ~19!

Here V5V11V0 is the total ~perturbed plus basic! mag-
netic field, andg andG are arbitrary functions of the sam
argument—stream functionV2ux. They will be chosen
uniquely in such a way that Eqs.~18! and ~19! are satisfied
asymptotically for arbitrary solutions vanishing atx→6`,
i.e., in the region of open stream lines. In those regions
space where the stream lines are closed, the functionsg and
G in principle may have different forms, and, in order
work correctly, in addition to the boundary conditions at i
finity it would be necessary to find the appropriate form
the functions in these regions, and to match solutions at s
ratrices. It would be a difficult task to work in that way an
we shall take corresponding asymptotic expressions of
r
-
ly

in

ity
n
-
f
s
-

f

f
a-

e

above functions to be valid everywhere. A detailed disc
sion concerning the choice and nature of such function
given in Ref. @12#. Thus we choose the functiong in the
form

g~V2ux!5C/@exp~V2ux!1exp~2V1ux!#, ~20!

whereC is an arbitrary constant. It will be varied in order t
obtain localized solutions in thex direction. We look for the
solution of Eq.~12! in the form

V~x,y!5Vx~x!1dVx~x!cos~ky!, ~21!

whereuVxu@udVxu. This yields the following two equations
for Vx anddVx :

S ]2

]x2
21D Vx5

C

2 cosh~Vx2ux!
, ~22!

S ]2

]x2
2k221D dVx52CdVx

sinh~Vx2ux!

2 cosh2~Vx2ux!
. ~23!

The above set of equations is solved numerically. The s
ond order differential equation~22! is not coupled with Eq.
~23!, and we solve it from the pointx50, looking for a
localized solution in thex direction. Changing the values o
the derivativeVx8 at x50, and the constantC, we find a class
of localized and odd solutions for certain pairs ofC and
2Vx8 , represented in Fig. 1. Equation~23! is linear, coupled
with the former equation, and, according to expression~21!,
apart from the constantC it also depends on the parameterk.
We look for its localized solution in thex direction. It turns
out that all values ofC are not allowed; well localized and
even solutions of Eq.~23! are possible for the values o
(C,k) given in Fig. 2. A typical appearance of the solutio
of Eqs. ~22! and ~23! is given in Fig. 3. HereC520, k
50.759, andu524. The difference between two neighbo
ing magnetic field lines isDV50.2.

It is interesting to note that Eq.~12! admits the steady
state solutions@2#, which can be found by using the follow
ing procedure. Put]/]t50 in Eq.~12!, i.e.,u50 in Eq.~18!,
and choose the arbitrary functiong as

g~V!52V1
4Ak2

a2
expS 2

2

A
V D .

FIG. 1. Locus of the pairs„2V8(0),C… yielding localized and
odd solutions of Eq.~22! along thex axis.
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In this case, Eq.~18! has a solution in the form

V5A lnF2 cosh~kx!12A12
1

a2
cos~ky!G . ~24!

The above expression fora2.1 represents a row of identica
Stuart’s vortices along they axis. In the limit a→1, this
gives the zonal flow. On the same condition, choosingg as

g~V!52V2
A

4
~a22b2!sinhS 4V

A D ,

whereb<a, andA are arbitrary constants, one can find t
solution of Eq.~18! in the form

V5A arctanhS b cos~ay!

a cosh~bx! D , ~25!

which represents a row of counter rotating vortices.

III. CONCLUSIONS

In this paper we have investigated the dynamics
strongly nonlinear electrons in a system with immobile io
of an inhomogeneous magnetized plasma with a spat
dependent magnetic field in the basic state. Such a sp
inhomogeneity of the magnetic field causes an electron fl
in the basic state. In the linear limit, two types of instabiliti
are possible: in a local approach we have the gradient dr
oscillatory instability, and in the nonlocal case the stream
instability. In the strongly nonlinear regime, the first instab
ity may saturate into coherent structures in the form
double vortices. In the second case, neglecting density
dients, the corresponding nonlinear electron equations ca
integrated once, and the pair of equations obtained in
way, describing total magnetic field and electron tempe
ture, are solved numerically. We have found a range of c
responding parameters for which the solutions are localiz
and are in the form of chains of islands.

The model used here can be of interest for an invest
tion of experimental plasmas and various magnetized pla
configurations in space, like the Earth magnetoplasma
magnetic arcs on the Sun, in spite of the fact that the par
eters in these systems differ very much. A good example
this is the analysis of data obtained recently from the Fr
satellite @13#. Vortex solitons discovered in this way, wit
characteristic spatial scales of 300–600 m, can be nicely

FIG. 2. Pairs of (C,k) giving well localized even solutionsdVx

of Eq. ~23!.
f
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a
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ja
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scribed using the standard nonlinear theory of drift wav
developed to describe drift wave turbulence in present
tokamak machines. Other examples are vortices and vo
chains obtained in the analysis of data from the satellite
B-1300 @14#.

According to experimental and theoretical investigatio
of high-confinement modes in tokamaks the appearanc
edge localized modes in experiments is now an establis
phenomenon. From this point of view, the formation of vo
tex chains in the edge region can act as a barrier to
particle transport. In the presence of finite dissipations, th
structures have a finite lifetime. In some cases@15#, because
of the shear flow, they show an oscillatory behavior which
related to the transition from low to high regimes, and ba
~L-H-L transitions!. These oscillations are closely connect
with changes of the velocity shear; when shear becom
weak, fluctuations grow, and vice versa. In the case of cha
associated with tearing modes@16#, the adiabatic theory of
their time evolution in the bulk plasma indicates an interm
tent behavior, which may result in their destruction and s
chastization of the magnetic field within a layer of the col
sionless skin depth scale. In the same problem, ano
possibility predicts the stochastization on a longer time sc
through a sequence of bifurcations that corresponds to ab
changes of vortex chain parameters like wavelength, sp
etc.

Recently, an interesting investigation of the influence
ion dynamics on generation of fluctuating magnetic field w
performed@17#, and some interesting types of linear inst
bilities on an ion time scale were found. This influence
the formation of coherent stationary chain structures wo
seem to be of interest to investigate, and this work is
progress.
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FIG. 3. Typical appearance for contour plots of the total ma
netic field. Here the distance value of the magnetic field betw
two lines isDV50.2, andC520, k50.759, andu524. Quanti-
ties are dimensionless, normalized in accordance with express
~11!.
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